博客
关于我
PCL滤波 ProjectInliers平面投射
阅读量:238 次
发布时间:2019-03-01

本文共 1310 字,大约阅读时间需要 4 分钟。

#include 
#include
#include
#include
#include
intmain(int argc,char ** args){ pcl::PointCloud
::Ptr cloud(new pcl::PointCloud
()); pcl::PointCloud
::Ptr cloud_pj(new pcl::PointCloud
()); cloud->width = 5; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); for (auto& p : *cloud) { p.x = 1024 * rand() / (RAND_MAX + 1.0f); p.y = 1024 * rand() / (RAND_MAX + 1.0f); p.z = 1024 * rand() / (RAND_MAX + 1.0f); } std::cerr << "cloud before projection" << std::endl; for (const auto& p : *cloud) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; pcl::ModelCoefficients::Ptr mc(new pcl::ModelCoefficients()); //平面模型的方程为 ax+by+cz+d = 0,此时设置 a = b = d = 0,c =1,则平面为 z=0的平面,也就是 X-Y平面 //mc->values.resize(4); //mc->values[0] = mc ->values[1] = 0; //mc->values[2] = 1.0; //mc->values[3] = 0; //投射可以是任意的平面 mc->values.resize(4); mc->values[0] = mc->values[1] = 2; mc->values[2] = 1.0; mc->values[3] = 0; pcl::ProjectInliers
proj; proj.setModelType(pcl::SACMODEL_PLANE); proj.setInputCloud(cloud); proj.setModelCoefficients(mc); proj.filter(*cloud_pj); std::cerr << "Cloud after projection" << std::endl; for(const auto & p :*cloud_pj) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; return 0;}

转载地址:http://wrct.baihongyu.com/

你可能感兴趣的文章
MySQL 优化:Explain 执行计划详解
查看>>
Mysql 共享锁
查看>>
mysql 写入慢优化
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>
mysql 如何给SQL添加索引
查看>>
mysql 字段区分大小写
查看>>
MySQL 存储引擎
查看>>
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 表的操作
查看>>
MySQL 触发器
查看>>
mysql 让所有IP访问数据库
查看>>
MySQL 高可用性之keepalived+mysql双主
查看>>
mysql5.6.21重置数据库的root密码
查看>>
MySQL5.6忘记root密码(win平台)
查看>>
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
mysql5.7性能调优my.ini
查看>>