博客
关于我
PCL滤波 ProjectInliers平面投射
阅读量:238 次
发布时间:2019-03-01

本文共 1310 字,大约阅读时间需要 4 分钟。

#include 
#include
#include
#include
#include
intmain(int argc,char ** args){ pcl::PointCloud
::Ptr cloud(new pcl::PointCloud
()); pcl::PointCloud
::Ptr cloud_pj(new pcl::PointCloud
()); cloud->width = 5; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); for (auto& p : *cloud) { p.x = 1024 * rand() / (RAND_MAX + 1.0f); p.y = 1024 * rand() / (RAND_MAX + 1.0f); p.z = 1024 * rand() / (RAND_MAX + 1.0f); } std::cerr << "cloud before projection" << std::endl; for (const auto& p : *cloud) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; pcl::ModelCoefficients::Ptr mc(new pcl::ModelCoefficients()); //平面模型的方程为 ax+by+cz+d = 0,此时设置 a = b = d = 0,c =1,则平面为 z=0的平面,也就是 X-Y平面 //mc->values.resize(4); //mc->values[0] = mc ->values[1] = 0; //mc->values[2] = 1.0; //mc->values[3] = 0; //投射可以是任意的平面 mc->values.resize(4); mc->values[0] = mc->values[1] = 2; mc->values[2] = 1.0; mc->values[3] = 0; pcl::ProjectInliers
proj; proj.setModelType(pcl::SACMODEL_PLANE); proj.setInputCloud(cloud); proj.setModelCoefficients(mc); proj.filter(*cloud_pj); std::cerr << "Cloud after projection" << std::endl; for(const auto & p :*cloud_pj) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; return 0;}

转载地址:http://wrct.baihongyu.com/

你可能感兴趣的文章
MariaDB的简单使用
查看>>
MaterialForm对tab页进行隐藏
查看>>
Member var and Static var.
查看>>
memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
查看>>
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
MFC模态对话框和非模态对话框
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
mxGraph改变图形大小重置overlay位置
查看>>
MongoDB可视化客户端管理工具之NoSQLbooster4mongo
查看>>
Mongodb学习总结(1)——常用NoSql数据库比较
查看>>
MongoDB学习笔记(8)--索引及优化索引
查看>>
mongodb定时备份数据库
查看>>
mppt算法详解-ChatGPT4o作答
查看>>
mpvue的使用(一)必要的开发环境
查看>>